Трением качения называется сопротивление, возникающее при качении одного тела по поверхности другого.
Рассмотрим круглый цилиндр радиуса R и веса P, лежащий на горизонтальной и шероховатой поверхности. Приложим к оси цилиндра горизонтальную силу T, не достаточную для начала скольжения цилиндра по поверхности (FТР≤FПРТР=f0N). Реакция от взаимодействия цилиндра с поверхностью должна быть приложена в точке их соприкосновения А; ее составляющие — сила нормального давления и сила трения (см. рис. 38).
При такой силовой схеме цилиндр должен катится при любой, сколь угодно малой, силе Т, что противоречит нашему опыту. Отмеченное противоречие возникло вследствие использования моделей в виде абсолютно твердых тел, соприкасающихся между собой в одной точке. Фактически из-за деформации соприкосновение происходит вдоль некоторой площадки, смещенной в сторону качения.
Учтем это обстоятельство, перенеся в ту же сторону на некоторое расстояние k точку приложения реакции поверхности (точка В на рис. 39.а).
Проведенные эксперименты показывают, что с ростом величины силы Т величина k возрастает до некоторого предельного значения, называемого коэффициентом трения качения, после чего качение начинается. Ниже приведены значения этого коэффициента (в сантиметрах) для некоторых материалов:
Дерево по дереву 0,05 – 0,08
Сталь мягкая по стали
(колесо по рельсу) 0,005
Сталь закаленная по стали
(шариковый подшипник) 0,001
Иногда удобно осуществить учет трения качения добавлением момента пары сил, называемого моментом трения качения и равным, соответственно
MТК=k⋅N (22)
Очевидно, что силовые схемы, изображенные на рисунках 39.а и 39.б эквивалентны.
Сравнение силовых схем рисунков 38 и 39.б показывает, что учет дополнительного фактора (деформация взаимодействующих при качении поверхностей) осуществлен нами добавлением момента трения качения к используемой ранее модели взаимодействия абсолютно твердых тел.
ПРИМЕР 12. На горизонтальной плоскости лежит каток радиуса R=5 cм и веса Р. Коэффициент трения скольжения катка о плоскость f0 = 0.2 , коэффициент трения качения к = 0.005 cм. Определить наименьшую горизонтальную силу Т, перпендикулярную оси катка, при которой каток начинает движение.
На рисунке изображен каток и схема действующих на него сил. Запишем уравнения равновесия:
∑FX=0=T−FТР;
∑FY=0=N−P;
∑MA=0=TR−MТК;
Дополнив систему выражением для предельного момента трения качения MТК=k⋅N,
найдем значение T1=kRP=0,001P.
Дополнив систему выражением для предельной силы трения F=f0N,
найдем значение T2=0,2P.
Вывод: При значениях T≤T1 каток покоится,
При значенияхT1<T≤T2каток катится без скольжения,
При значениях T>T2 каток катится со скольжением.
Так как T1=0,001P << T2=0,2P, качение начинается при существенно меньшей горизонтальной силе. Именно это обстоятельство обуславливает замену подшипников скольжения на подшипники качения в ситуациях, когда такая замена технически осуществима.